Dynamics and Modelling

Contents

- Mechatronics Training Curriculum
- Details of Course Dynamics and Modelling

Mechatronics Training Curriculum

<u>Relevant partner trainings:</u> Applied Optics, Electronics for nonelectrical engineers, System Architecture, Soft skills for technology professionals,

. . .

www.mechatronics-academy.nl

Mechatronics Academy

- In the past, many trainings were developed within Philips to train own staff, but the training center CTT stopped.
- Mechatronics Academy B.V. has been setup to provide continuity of the existing trainings and develop new trainings in the field of precision mechatronics. It is founded and run by:
 - Prof. Maarten Steinbuch
 - Prof. Jan van Eijk
 - Dr. Adrian Rankers
- We cooperate in the **High Tech Institute** consortium that provides sales, marketing and back office functions.

Dynamics and Modelling

Course Directors / Trainers

Course Director(s) / Trainers

- Prof.dr.ir. Jan van Eijk (MiceBV, Mechatronics Academy)
- Dr.ir. Adrian M. Rankers (Mechatronics Academy)
- Dr.ir. Dick Laro (MI-Partners)

Program

Day	Торіс	Presenters
1	 Introduction / Context Recap control (incl. Exercise 20sim) 	Jan van Eijk Adrian Rankers
	 Modal decomposition Modelling & optimization radial servo Compact Disc actuator 	Jan van Eijk & Adrian Rankers
2	 Allowable vibration levels in precision equipment (external and internal sources) Reducing negative effects (stability & vibration levels) caused by actuator reaction forces. 	Adrian Rankers
	 Guiding System Flexibility Dynamic error budgetting 	Jan van Eijk
3	 Floor vibration isolation Overactuation Friction 	Dick Laro
	 Experimental Modal Analysis Substructuring / state space / FEM to Matlab Advanced Feed Forward 	Adrian Rankers

Day 1 (morning)

- Recap Control
- Modal Decomposition

brainport

Day 1 (afternoon)

- Conceptual Modelling
- Design/Opt. for Dyn. & Control

dX

pWWr 💋

VVV Focus Coil

Case: Optical Disc Drive

WW Frame WW

Simple 1D model for radial

performance

~ 25 Hz

Frame

Mode Shapes

3.....

ww

Day 2 (morning)

- Allowable vibration levels
- Impact of reactions forces
 - Stability & time response
 - · Concepts to reduce effect
 - Simulation Exercises

Concepts to reduce effect

Day 2 (afternoon)

- Dynamic error budgetting
- Floor vibration isolation

VC = Vibration Criterium

Narrow Band vs 1/3 Octave

Introduced by Bolt, Beranek and Newman (BBN)

BBN or VC-curve

(RMS floorvelocity at 1/3 octave)

(layout, spec, modelling)

12.5 14 20 25 31.5 40 50 45

10⁰

10 Frequency [Hz]

 $\sigma_{average} = 0.$

 $\sigma_{max} = 1.11$

10

Non-Linearity

· Some sound Suggestions

Rock Solid

10

Frequency [Hz]

Day 3 (morning)

- Experimental Modal Analysis
- Conceptual design of stage concepts

mechatronics

brainport

academy

mechatronics academy

Via the website of our partner High Tech Institute

