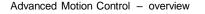
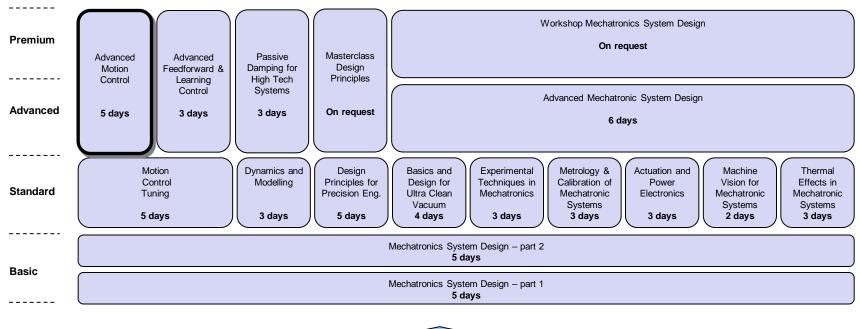

Advanced Motion Control Overview of training



Contents


- Mechatronics Training Curriculum
- Details of Course Advanced Motion Control Tuning

Mechatronics Training Curriculum

<u>Relevant partner trainings:</u> Applied Optics, Electronics for nonelectrical engineers, System Architecture, Soft skills for technology professionals,

. . .

www.mechatronics-academy.nl

Mechatronics Academy

- In the past, many trainings were developed within Philips to train own staff, but the training center CTT stopped.
- Mechatronics Academy B.V. has been setup to provide continuity of the existing trainings and develop new trainings in the field of precision mechatronics. It is founded and run by:
 - Prof. Maarten Steinbuch
 - Prof. Jan van Eijk
 - Dr. Adrian Rankers
- We cooperate in the **High Tech Institute** consortium that provides sales, marketing and back office functions.

Advanced Motion Control

Course Directors / Trainers

Course Director(s)

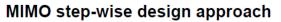
- Dr.ir. Tom Oomen (TU/e)
- Dr.ir. Adrian Rankers (Mechatronics Academy)

Teachers

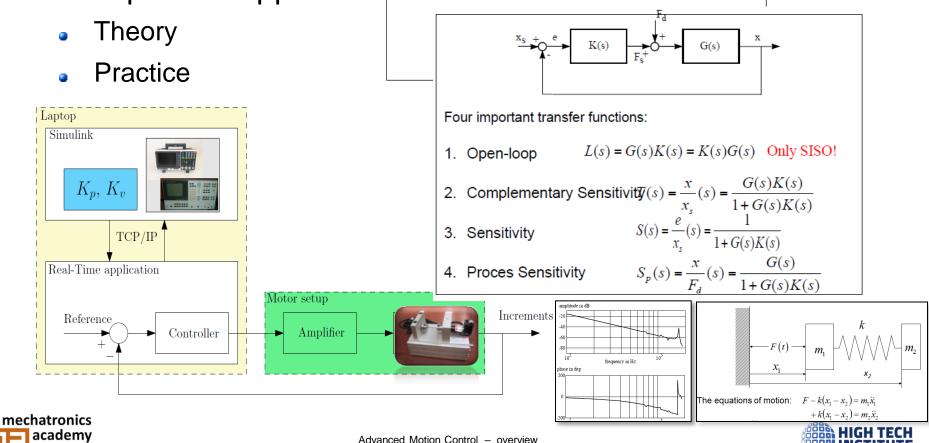
- TU/Eindhoven:
 - Prof.dr.ir. M. Steinbuch, Dr. ir. T. Oomen, Dr.ir. R.J.R. van der Maas
 - ir. L.L.G. Blanken, ir. E. Evers, ir. R. de Rozario, ir. R. Voorhoeve, ir. J.C.D. van Zundert
- Other:
 - Prof. Dr.ir. M.F. Heertjes (ASML + TU/e)
 - Dr.ir. M.J.M. van de Wal (ASML)
 - dr. ir. W. Aangenent (ASML)
 - Dr.ir. D. Rijlaarsdam (Additive Industries)

Program

Day	Timing	Торіс
1	Morning	 Introduction / Who is who / Program / Goals Refreshing SISO Motion Control Design SISO experiment on MIMO set-up
	Afternoon Evening	 Modal Description SIMO experiments (1 in, 2 out) + MIMO experiments Linear Algebra Dinner
2	Morning	StabilityInteraction Analysis
	Afternoon	Static Decoupling (theory & experiments)
3	Morning	 MIMO – how to ? MIMO identification Case study: H-drive
	Afternoon	Exercises case studySequential loop design (theory & experiments)
4	Morning	Sequential loop design exercisesModel based control
	Afternoon	Model based control - exercise
5	Morning	Non-Linear IdentificationAdvanced Feed Forward
	Afternoon	Identificaton for Control and ILCChallenges in Motion for High Tech

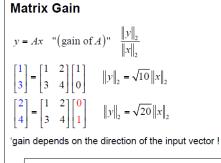


Day 1 (morning): Recap SISO


- Introduction / goals ٢
- **Recap SISO approach**

Laptop

brainport



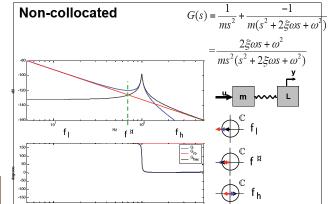
- Measure/identify the mimo FRF data 1.
- 2. Use interaction measures to assess the amount of interaction
- 3. Investigate decoupling
- Investigate sequential loop closing 4.
- 5. Use norm based design

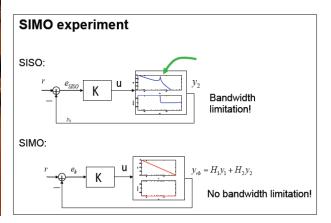
Day 1 (afternoon): First steps ...

- Modal Description
- SIMO experiments (1 in, 2 out)
- Linear Algebra

Singular values of A

mechatronics


brainport

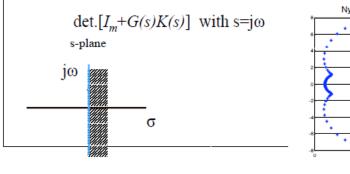

$$\underline{\sigma}(A) \leq \frac{\|Ax\|_2}{\|x\|_2} \leq \overline{\sigma}(A)$$

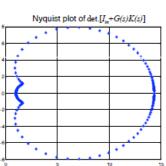
If we take for x an orthonormal eigenvector of A then

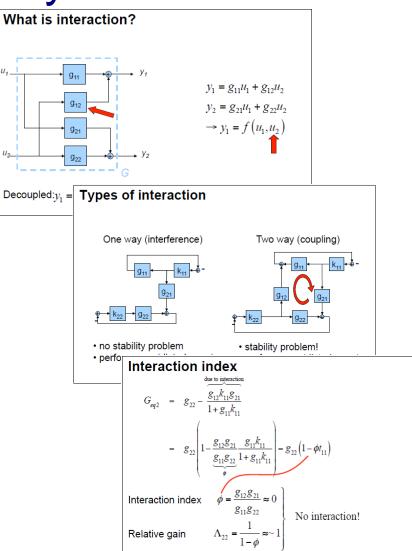
$$\underline{\sigma}(A) \leq \frac{\|\lambda x\|_2}{\|x\|_2} \leq \overline{\sigma}(A)$$
$$\underline{\sigma}(A) \leq |\lambda| \leq \overline{\sigma}(A)$$

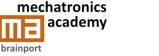
Day 2 (morning): Stability & Interaction

Stability

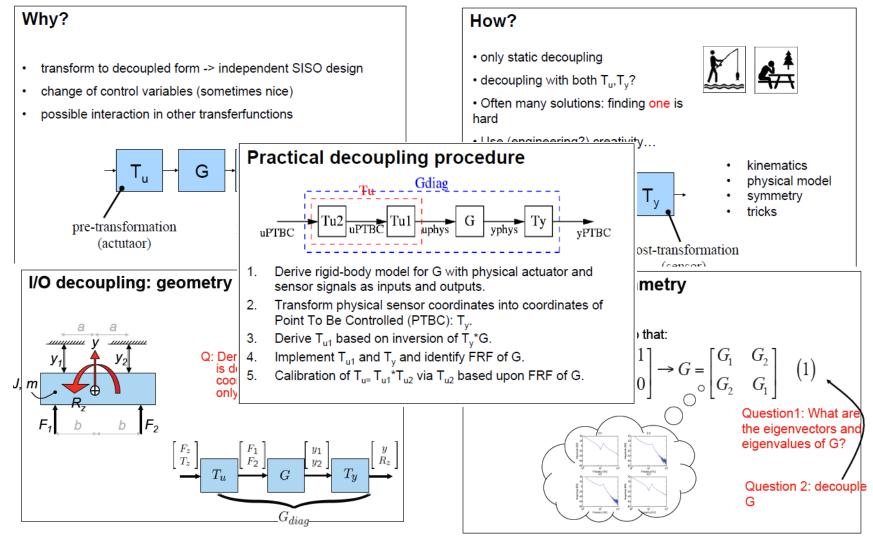

Interaction Analysis


Graphical evaluation of stability

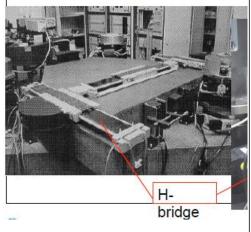

Open-loop system G(s)K(s) is stable!


For increasing frequency along the curve of $\det [I_m + G(s)K(s)]$ in the complex plane, the point (0,0) should stay at the left hand side of the curve.

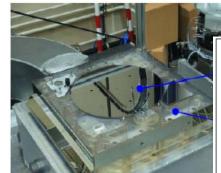
The Nyquist plot should not encircle the point (0,0)



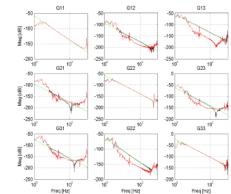
Day 2 (afternoon): Static Decoupling



Day 3 (morning): MIMO Identification


Rigid-body-dominated MIMO motion systems

- · H-bridges: controlled in horizontal plane.
- Example: in wafer stages:


Rigid-body-dominated MIMO motion systems

- Single mass devices: controlled in 6DOF's.
- Example: in wafer stages:

Practical decoupling procedure

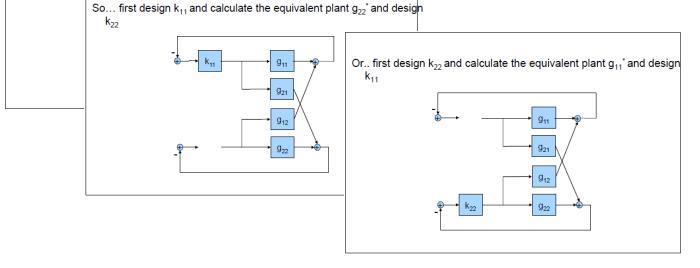
• Example of calibration T_{u2}:

• FRF with $T_{u2}=I$ • $\frac{1}{(j\omega)^2} \cdot \widetilde{G}_{FRF}$ • FRF with calibrated T_{u2}

	[1.0000	- 0.0033	-1.3917]	
$T_{u2} =$	0.0122	1.0000	-0.6862	
	0.0021	-0.0087	1.0000	

Day 3 (afternoon): MIMO continued ...

Exercises

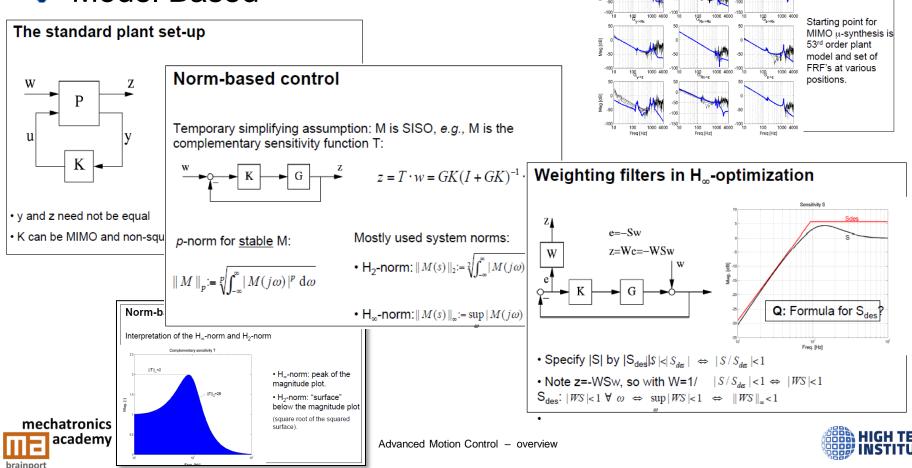

Sequential Loop Design

First close one loop stable, then the overall stability is determined by closing the other loop with the equivalent plant!

Sequential loop closing - key idea

Summary / Remarks

- · the only good way to do SISO design for a MIMO plant!
- everything can be done usings FRFs only!
- in most cases 2x2 subproblems can be separated, if not....
- · reverse order and see the difference
- margins are tricky...always check closed loop MIMO sensitivity S(s)!



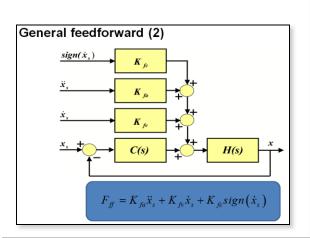
Day 4 (morning): Model Based

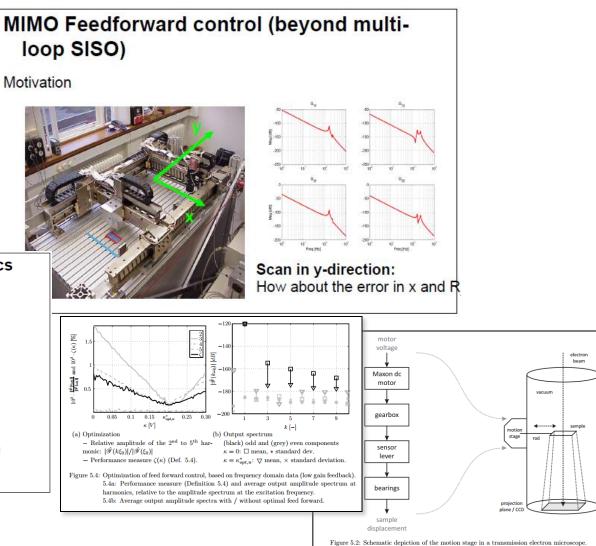
- Exercise Sequential Loop Shaping
- Model Based

Application H_{μ}/μ control design to wafer

stage

Day 4 (afternoon): Model Based Control ...

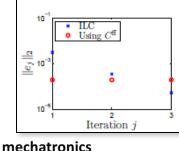

Exercise


Day 5 (morning): Non-Linear & Adv. FF

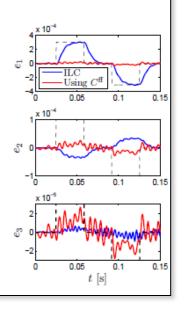
Feedforward control for flexible dynamics

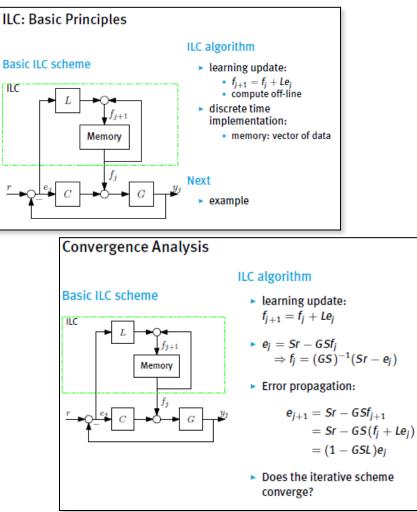
4th order system (measured on load)

$$\begin{split} G &= \frac{\left(Ds + k\right)}{M_1 M_2 s^2 \left(s^2 + \frac{M_1 + M_2}{M_1 M_2} Ds + \frac{M_1 + M_2}{M_1 M_2} k\right)} \\ &= \frac{\left(Ds + k\right)}{M_1 M_2 s^2 \left(s^2 + 2\xi \sigma s + \sigma^2\right)} \\ &\Rightarrow K_{FF} = G^{-1} = \frac{M_1 M_2 s^2 \left(s^2 + 2\xi \sigma s + \sigma^2\right)}{\left(Ds + k\right)} \end{split}$$


Day 5 (afternoon): Identification for Control / ILC & Challenges in High Tech

ILC example


ILC iterations


- 1. Initial error
- 2. After one iteration:
 - error reduced
- 3. After two iterations:
 - error further reduced
 - outperforms C^{ff}!
 - more iterations?

academv

brainport

Via the website of our partner High Tech Institute

